
Submitted to 1st International Conference on Information Technology in Mechatronics (ITM’01)
http://mecha.ee.boun.edu.tr/itm

Using Stereotypes of the Unified Modeling Language in Mechatronic Systems

Torsten Heverhagen, Rudolf Tracht
University of Essen, Germany, FB 12, Automation and Control

Torsten.Heverhagen@uni-essen.de, Rudolf.Tracht@uni-essen.de

Abstract

The Unified Modeling Language (UML) is the standard
design language for developing object oriented applica-
tions. It is widely used in the development of complex
systems for general-purpose computers. In heterogeneous
domains like mechatronics exist a lot of special-purpose
programming languages, which are not always easily to
map to UML concepts. For such reasons the UML pro-
vides an extension mechanism, called stereotyping. This
can be used for the mapping of domain-specific languages
to the UML. Our approach is to use UML within a
mechatronic system for the integration of different spe-
cialized design and programming languages. As a
placeholder for a system component, which is modeled by
such a language, we define domain specific stereotypes.
In this paper we compare advantages and drawbacks of
using stereotypes by an example stereotype: the Function
Block Adapter (FBA). An FBA allows the interoperability
between the UML and function blocks of the IEC 61131-3.

1. Introduction and Motivation

The Unified Modeling Language (UML) is the standard
design language for developing object oriented applica-
tions. It is widely used in the development of complex
systems for general-purpose computers. It is supported by
most object oriented modeling tools. Typical program-
ming languages for the implementation of UML models
are C++ or Java.

In the area of mechatronic systems design environments
are specialized to the target hardware or the branch of the
target industry. A design environment for a robot cell
could for example contain a 3-dimensional layout editor
for the working area and some features for planning the
movements of the tool center point. On the other hand
continuous controllers in process industry are often mod-
eled and simulated with Matlab/Simulink. A special set
of languages evolved for the design and programming of
programmable logic controllers (PLCs), which is stan-

dardized in IEC 61131-3. The UML is, in contrast, a com-
pletely hardware-independent general-purpose modeling
language. When applying the UML to mechatronic sys-
tems it turns out that some additional concepts are needed
to model such systems. Such concepts can be added by
introducing stereotypes. Our approach is to use UML
within a mechatronic system for the integration of differ-
ent specialized design and programming languages. As a
placeholder for a system component, which is modeled by
such a language, we define domain language specific
stereotypes.

Section 2 gives a short introduction into the definition of
stereotypes within the UML. Section 3 uses a remote
maintenance application to explain example requirements
for the integration of a function block into a UML model.
In section 4 we provide a solution to these requirements,
but we restrict the solution only to contain standard ele-
ments of the UML. In section 5 we give a different solu-
tion to the same problem by using a special stereotype –
the Function Block Adapter (FBA) [8]. A FBA is a
placeholder for a function block within a UML model. It
can be used to specify the mapping from UML signals to
function block signals and vice versa. Section 6 discusses
the advantages and drawbacks of both solutions with a
special concern on using stereotypes. We close this paper
with a summary.

2. Stereotypes

The UML is based on an architecture with four layers:
At the lowest layer are the user objects (user data). At

this layer instances of classes can be found. For example,
the instance <device_with_serial_number_123> is of
class Device.

The next layer is called model. This layer contains the
classes which define the behavior and structure of the user
objects. Class Device belongs to this layer. It contains
attributes like serialNr and operations like getSerialNr()
and so on. If we speak about a UML model we mean a set
of objects at this level.

The metamodel layer defines, which modeling elements
are available within a UML model. It contains elements

Submitted to 1st International Conference on Information Technology in Mechatronics (ITM’01)
http://mecha.ee.boun.edu.tr/itm

like Class, Operation, Attribute, Generalization, Actor,
UseCase, Component, ...

The highest layer is the meta-metamodel. It defines the
language used in the metamodel. Typical objects at this
level are MetaClass, MetaAttribute, MetaOperation, ...
Instances of MetaClass are called metaclasses. Meta-
classes belong to the metamodel. For example, object
Class from the metamodel is a metaclass.

The big advantage of this language architecture is the
extensibility of the metamodel. Within the metamodel an
existing modeling element can be extended or restricted to
specific behavior. This results in a new modeling element,
which is called a stereotype of the base element. The
mechanism of extending base modeling elements is called
stereotyping. The UML provides this mechanism to users
of the UML. Another way of extending the metamodel is,
for example, to define new metaclasses instead of stereo-
types. But this can only be done by the standardization
committee of the UML.

With stereotyping a base modeling element is extended
by new properties and restricted by new constraints. New
properties are added by the tagged value mechanism. New
constraints are added by a formal language which nor-
mally is the Object Constraint Language (OCL) [1].

A tagged value is a keyword-value pair that may be at-
tached to any kind of modeling element. The keyword is
called a tag. A tag represents a property like an attribute,
an operation or even a completely new kind of property.
The value can be a simple datatype value but may also
refer to another modeling element.

A constraint is a relationship among modeling elements
which specify conditions that must be maintained as true.
Constraints must be attached to a modeling element. If a
constraint evaluates to false, the associated modeling ele-
ment is invalid. Sections 3 and 4 demonstrate the use of
constraints.

2.1 Capsules, Ports, and Protocols

Now we introduce special stereotypes which are of in-
terest to the area of mechatronics. The first stereotype is
called Capsule. Fig. 1 shows the example capsule Rem-
MainBrowser at the most left position. The capsule be-
longs to the model layer. The keyword Capsule within the
quotation marks (called guillemets) «» denotes that Rem-
MainBrowser is not
a normal class (in-
stance of metaclass
Class), but a capsule
class (instance of
stereotype Capsule).
A user of the UML
does not notice
whether a capsule is
a stereotype or a
base element. He or

she simply uses the elements provided by a modeling tool
in a toolbar. In such toolbars and in diagrams stereotypes
are often presented by special icons instead of keywords
like in Fig. 1.

In this paper, if we use the term Capsule without a defi-
nite or indefinite article we mean the capsule-stereotype at
the metamodel layer. A capsule or the capsule RemMain-
Browser or simply RemMainBrowser without a definite or
indefinite article is an instance of Capsule at the model
layer. An instance of RemMainBrowser at the user object
layer is denoted by an article. After section 2 we only care
about the model and user object layer. Within this section
we concentrate on the relationship between the model and
the metamodel layer. The meta-metamodel layer is not
affected by stereotyping. The declaration of Capsule is
partially given in Fig. 2. A more detailed explanation of
the concepts of Fig. 2 is given in [1], p. 3-63. A compre-
hensive description of capsules is given in [2]. The func-
tionality and the meaning of the elements in Fig. 1 is ex-
plained in section 3.

Fig. 2 shows a class diagram containing metaclasses and
stereotypes. The metaclass Class is a subclass of Classi-
fier which is in turn a subclass of GeneralizeableElement.
ArchitecturalElement is a stereotype of Generalize-
ableElement. Consequently, Capsule is an Architec-
turalElement which stereotypes Class. It indicates a class
that is used to model the structural components of an ar-
chitecture specification. To identify if a capsule may be
created and destroyed dynamically, a new attribute is
tagged to Capsule called isDynamic. The constraint
{self.isActive=true} means that capsules represent only
active objects maintaining their own thread of control.
Capsules run concurrently with other active objects. Ad-
ditionally there are some more constraints on capsules not
shown in Fig. 2. Capsules may only communicate to other
capsules through ports with predefined signals. These sig-
nals must be defined within a protocol. A protocol is like a
capsule also a stereotype of a class. An example of a pro-
tocol is given in Fig. 1 called DataAccessingProtocol.
Between this protocol and RemMainBrowser is a directed
association called dataAccessingPort. Attached with it is
the keyword port. This means that dataAccessingPort is a
stereotype of an association called port. Through this port
a RemMainBrowser may send signal getData and receive
signal data. Values of type Workload may be attached

«capsule»
RemMainBrowser

Ports
dataAccessingPort

«protocol»
DataAccessingProtocol

data(Workload)

getData

Workload

getReqPerMin(): int
getOverloaded(): bool
setReqPerMin(rpm: int)
setOverloaded(ol: bool)

«port»
dataAccessingPort

in

out

reqPerMin: int
overloaded: bool

Fig. 1. Example capsule with one port and a protocol which depends on a class
(model layer)

Submitted to 1st International Conference on Information Technology in Mechatronics (ITM’01)
http://mecha.ee.boun.edu.tr/itm

with signal data. For this reason DataAccessingProtocol
depends on Workload. Workload is a normal class with
attributes and operations.

«metaclass»
GeneralizeableElement

«metaclass»
Classifier

«metaclass»
Class

«stereotype»
ArchitecturalElement

«stereotype»
Capsule

Tags
isDynamic: Boolean

Constraints
{self.isActive = true}

«
st

er
eo

ty
p

e»

Fig. 2. Declaration of stereotype Capsule
(metamodel layer)

All elements of Fig. 1 belong to the model layer. All
elements of Fig. 2 belong to the metamodel layer. Rela-
tionships between layers are graphically rendered by sym-
bols and optionally by keywords within guillemets. The
assignment of Workload to Class is given by the rectangle
around the name. A dashed directed line like between
DataAccessingProtocol and Workload is assigned to De-
pendency. To assign RemMainBrowser to Capsule instead
of to Class the keyword «capsule» is needed additionally
to the rectangle.

The idea of capsules, ports, and protocols came from the
field of embedded and real-time systems and were first
introduced in [4] as an object oriented design language. In
1999 the first UML tool containing these concepts had
been available [5] but until now they have not been within
the UML standard. The standard first mentions the cap-
sule-stereotype in [1]. According to [6] these concepts
will be part of UML standard version 2.0 which is ex-
pected to appear in 2002.

Because to communicate over ports with defined proto-
cols is very natural within mechatronic systems we de-
cided to use capsules rather than normal classes to specify
active objects within our models [7]. Furthermore, we
developed a stereotype which allows the interoperability
between capsules and function blocks.

2.2 Function Block Adapter

In [8] we introduced the FBA for the first time. Our idea
is that a FBA looks like a capsule within a UML environ-
ment and like a function block within an IEC 61131-3
environment. The first aim is easy to achieve: we declare
a new stereotype called FunctionBlockAdapter as a sub-
class of Capsule. Fig. 3 shows the declaration of FBA at
the metamodel layer. Consequently, FBA inherits all
properties of Capsule. It is able to communicate with

other capsules through ports. The base modeling element
of FBA is Class.

IEC 61131-3 does not pro-
vide an extension mechanism
like stereotyping. This standard
is based on a formal grammar
instead of on a metamodel ar-
chitecture. As a result, a func-
tion block, which is responsi-
ble for communication with a
capsule, cannot be distin-
guished from other function
blocks. As a workaround we
add the suffix FBA to the name of such function blocks.
To achieve the same formality as IEC 61131-3 we pro-
vided a special language called FBA-language with a for-
mal grammar for FBAs. Within IEC 61131-3 this lan-
guage is treated as a comment. Within the UML this lan-
guage is attached by tagged values to FBAs.

An example of a FBA is given in section 5. The com-
plete definition of FBA is out of the range of this paper. In
the following sections we concentrate on an example ap-
plication of a FBA. Further examples are given in [8], [9],
and [10]. A discussion about the relationship between
design and implementation of FBAs can be found in [9].
A closer look to real-time aspects will be given in [10].

3. The Remote Maintenance Browser

The name RemMainBrowser of the capsule in Fig. 1 is
an abbreviation for Remote Maintenance Browser. The
software component modeled by RemMainBrowser be-
longs to an application for the remote maintenance of a
working cell. This application is developed with object
oriented languages.

A RemMainBrowser is respon-
sible for getting maintenance data
out of the working cell and for
displaying the data within a
browser. Under ideal circum-
stances the working cell is given
as a capsule. This capsule could
look like in Fig. 4. It is called
WorkCellController. It contains the port ~dataPort.
~dataPort is an association to DataAccessingProtocol (not
shown in Fig. 4). The symbol "~" as the first character
means that for this port all in-signals of the protocol are
out-signals and vice versa. With that, ~dataPort may be
connected to dataAccessingPort of RemMainBrowser.
Such a connection is only established between objects at
the user object layer.

Fig. 5 shows a collaboration diagram with an established
connection between a RemMainBrowser and a WorkCell-
Controller. DataAccessingProtocol specifies the signals,

«stereotype»
Capsule

«stereotype»
FunctionBlockAdapter

Fig. 3. FBA declara-
tion

«capsule»
WorkCellController

Ports
~dataPort

Fig. 4. WorkCell-
Controller

Submitted to 1st International Conference on Information Technology in Mechatronics (ITM’01)
http://mecha.ee.boun.edu.tr/itm

which may be sent and received over this connection, their

direction and their sequence.
Allowed signal sequences may be defined within a pro-

tocol by a protocol state machine [1], p. 2-175. Fig. 6
shows the state machine of DataAccessingProtocol. Ini-
tially the protocol is in state free. In this state only signal
getData may be sent. After getData the protocol is in state
wait_for_data. In this state only signal data is allowed.
The browser updates its data by sending getData to the
working cell controller and by waiting for data from the
controller.

The data value which is sent with signal data is of type
Workload (Fig. 1). Attribute reqPerMin contains the ac-
tual number of requests per minute, which the working
cell has to serve for. Attribute overloaded indicates
whether the working cell is able to serve for all requests or
not. Like usually in object orientation attributes may be
accessed and changed by operations like getReqPerMin,
setReqPerMin, getOverloaded, and setOverloaded. In
order to formally specify effects of operations it is possi-
ble to write pre- and postconditions with the OCL. Fig. 7
shows example postconstraints for two operations. The
sign "=" denotes the logical compare operator and not an
assignment. Assignments cannot be expressed by OCL,
because it is a language free of side effects. It is not possi-

ble to change the state of any object by evaluating OCL
expressions. The expression in line (2) means: After exe-
cuting setOverloaded attribute overloaded must be equal
to ol. The body of the operation is left to the implementa-
tion. Alternatively we could use natural language like
English instead of OCL. The disadvantage would be that

the description becomes ambiguous. To avoid this, we use
formal languages if possible. The additional use of natural
language is necessary to ease communication between
developers.

Until now we collected all information which is needed
for communication, if the working cell is modeled by a
capsule. If the working cell is modeled by a function
block this function block could look like in Fig. 8. Work-

load_Data is a user de-
fined datatype given in
Fig. 9. It contains two
elements. nr_req_min
shows the number of re-
quests per minute and
overload_flag signals a
possible work overload. The Boolean input variable
in_trigger triggers the function block to provide actual
workload data in out_data.
In out_trigger the function
block informs that the data in
out_data is valid. Fig. 10
shows a timing diagram ex-
plaining this behavior in
more detail. After in_trigger
is set, the deadline to set
out_trigger is 200 ms.
in_trigger is reset when out_trigger is set. out_trigger and
out_data remain set for 20 ms. These timing conditions
must be known from the function block specification.

We use the next two sections to provide different solu-
tions for integrating WorkCellControllerFB into a capsule
environment. In section 4 we restrict the solution only to
contain standard UML concepts. Though the standardiza-
tion is not finished we treat capsules as standard UML
concepts. In section 5 we use an FBA instead of standard
UML. We try to provide both solutions as simple and un-
derstandable as possible, but our aim is also to achieve the
same formality in both approaches.

4. Solution 1: Standard UML

In our first solution we add the variables of the function
block as attributes to WorkCellController. The user de-
fined datatype is modeled by a class. Variable out_data is
an association to this class (Fig. 11). We assume that these
attributes have always the same values like the variables
of the function block itself. For the capsule in_ variables

/aWorkCellController:
WorkCellController

/aRemMainBrowser:
RemMainBrowser

dataAccessingPort ~dataPort

Fig. 5. Collaboration diagram (user object
layer)

IUHH ZDLWBIRUBGDWD

GDWD

JHW'DWD

Fig. 6. Protocol state machine

(1) context Workload::setOverloaded(ol: bool)
(2) post: self.overloaded=ol

(3) context Workload::setReqPerMin(rpm: int)
(4) post: self.reqPerMin=rpm

Fig. 7. Postconstraints for set- and getOver-
loaded

WorkCellControllerFB

in_triggerBOOL

Workload_Data

BOOLout_trigger

out_data

Fig. 8. Function block declaration
TYPE Workload_Data
STRUCT
 nr_req_min: INT;
 overload_flag: BOOL;
END_STRUCT
END_TYPE

Fig. 9. Workload_Data

out_data

in_trigger

out_trigger

Fig. 10. Timing dia-
gram

Submitted to 1st International Conference on Information Technology in Mechatronics (ITM’01)
http://mecha.ee.boun.edu.tr/itm

are writeable and out_ variable are readable. Furthermore
the capsule contains an association actualWorkload to
class Workload. In actualWorkload the value is stored,
which is given in out_data and translated to type Work-
load. Operation setInTrigger changes the value of
in_trigger according to its parameter. It is formally de-
fined in Fig. 12.

The behavior of WorkCellController is specified by a
statechart in Fig. 13. Initially the capsule is in state idle.
When it receives signal getData it sets in_trigger to true
and waits for out_trigger in state wait. If the deadline

given in section 3 is reached it sets in_trigger to false. The
transition out_trigger from wait to idle contains an action
sequence. The first three actions are call actions calling
operations of the capsule and class Workload. The seman-
tics of these actions is given in Fig. 12 and Fig. 7. For the
fourth action the semantic meaning is more difficult to
express in OCL. We chose to use the keyword sendaction
which maps the action to metaclass SendAction in order to
define the semantics of this action. The action language
used in statecharts like in Fig. 13 is not defined within
UML. By developers the syntax of the implementation
language is mostly chosen. But in this example at least
two different programming languages are needed: one
object oriented language and another out of IEC 61131-3.
We decided to choose a semicolon as sequence statement.

The keyword sendaction is UML style and
~dataPort.send(...) is similar to a C++ method call in
[5].

With this we finished solution 1. The logical map-
ping of UML signals to assignments of variables is
hardware-independent specified. In the next section
we do the same with the help of a FBA.

5. Solution 2: Using a FBA

A FBA consists of a structural and a behavioral part.
The structural part looks similar to capsule WorkCell-

Controller and is given in Fig. 14. The FBA has the name
WorkCellControllerFBA. The attribute declaration has the
same syntax like the io_var_declaration in IEC 61131-3.
Section Signal_Mapping defines that only signal getData
may start a communication which is given by a positive
edge in in_trigger to the function block. What happens
after receiving getData is specified in the behavioral part
(Fig. 15).

 The behavioral part is written in the FBA-Language.
This language is based on a formal grammar developed
for the FBA-stereotype. For each Signal_Mapping an op-
eration must be specified. WorkCellControllerFBA only

«capsule»
WorkCellController

Ports
~dataPort

in_trigger: bool
out_trigger: bool

setInTrigger(t: bool)

Workload_Data

no_req_min: int
overload_flag: bool

Workload

actualWorkload

out_data

Fig. 11. Class diagram of WorkCellController

context WorkCellController::setInTrigger(t: bool)
post: self.in_trigger=t

Fig. 12. Postconstraint of setInTrigger

idle wait

~dataPort.getData / setInTrigger(true)

out_trigger /
 setInTrigger(false);
 actualWorkload.setReqPerMin(out_data.nr_req_min);
 actualWorkload.setOverloaded(out_data.overload_flag);
 «sendaction» ~dataPort.send("data", actualWorkload)

after 200 ms /
 setInTrigger(false)

Fig. 13. Statechart of WorkCellController

«functionblockadapter»
WorkCellControllerFBA

Ports
~dataPort

VAR_OUT
 in_trigger: BOOL;
END_VAR
VAR_IN
 out_trigger: BOOL;
 out_data: Workload_Data;
END_VAR

Signal_Mapping
~dataPort.getData raises FBSignal(in_trigger)

Fig. 14. FBA declaration

On_UMLSignal (s1: ~dataPort.getData)
 Signals
 s2: ~dataPort.data;
 Begin
 in_trigger := true;
 waitFor(out_trigger, T#200ms);
 in_trigger := false;
 s2.setReqPerMin(out_data.nr_req_min);
 s2.setOverloaded(out_data.overload_flag);
 sendAsync(s2);
 End
 On_Exception
 Begin
 in_trigger := false;
 End
End_On_UMLSignal

Fig. 15. Behavioral part of WorkCellControl-
lerFBA

Submitted to 1st International Conference on Information Technology in Mechatronics (ITM’01)
http://mecha.ee.boun.edu.tr/itm

needs one operation On_UMLSignal (...). s1 can be treated
as a signal instance received at ~dataPort. After Signals
further signal instances can be declared which are to sent
or to received within the operation.

Between Begin and End the same behavior like in the
statechart of Fig. 13 is described. At first in_trigger is set
to true. Then the execution is stopped until out_trigger
becomes true or the deadline is reached. After a positive
edge in out_trigger statements similar to the action se-
quence in Fig. 13 are executed. Properties of classes asso-
ciated to a signal as an argument are treated as properties
of the signal instance within the FBA-Language. The
statements waitFor and sendAsync belong to the language.
The correct use of properties like setOverloaded must be
evaluated with the semantics given in Fig. 7. Statements
after On_Exception are executed when a deadline is
reached or other exceptions occur.

At this point we have concluded the second solution. To
be independent of tools it is also possible to express the
structural part of Fig. 14 within the FBA-Language.

6. Comparison

Both solutions have the same level of detail. They con-
tain the same information, which is provided to engineers
at the implementation phase. Both specify the logical
mapping from DataAccessingProtocol to the protocol of
the function block WorkCellControllerFB. Both solutions
wrap the function block into a capsule.

The solutions are distinguished by their level of formal-
ity within the mapping from attributes of a capsule to
variables of a function block. In solution 1 this mapping is
stated as a comment in natural language. There is no for-
mal distinguishing mark between a helping attribute like
actualWorkload and interface variables of a function
block. We did not add this information to attributes by
tagged values in solution 1, because this would lead to
solution 2. In solution 2 a user may declare interface vari-
ables using syntax of IEC 61131-3. Technically we tagged
strings like "VAR_IN" or "VAR_OUT" to FBA attributes.
This information can be used in code generators. Instead
of helping attributes it is in solution 2 only allowed to
declare signal instances within operations.

Another difference between both solutions is the for-
mality of the behavior specification. Solution 1 uses a
combination of a statechart and OCL to achieve an unam-
biguous specification. Weakness lies within the action
language of UML statecharts as discussed at the end of
section 4. We did not define a formal grammar for this
language, because this would also result in a solution
similar to solution 2. In solution 2 we used the FBA-
Language to specify behavior. Technically this language
is an action language, which is attached to a FBA state-
chart. The statechart of a FBA is hidden to a user. It can
be generated out of the information given in the signal

mapping and the FBA-operations. The guideline that a
user should not work directly on a FBA statechart is ex-
pressed by constraints for FBAs.

Tagged values and constraints can be used to precise
semantics of standard UML elements. If there is a prob-
lem which often occurs like wrapping a function block
users should be forced to specific guidelines. These
guidelines may be packed to a new set of stereotypes like
capsules, ports, protocols, and FBAs.

7. Summary

UML provides a huge set of general design concepts and
graphical languages, which can be applied to almost every
domain. Because of its general character it sometimes
forces users to specify with natural language or with free-
style structured text.

Design and programming languages in mechatronics
must be as formal and unambiguous as possible. A lot of
specialized languages exist, which fulfill these require-
ments. The general character of the UML can serve as a
basis for integrating these languages. The gap of formality
can be closed by the extension mechanisms of the UML.

Within FBAs we achieved a higher formality by re-
stricting capsules to specialized behavior. This is the pro-
posed way for using stereotypes. Furthermore, it is possi-
ble to provide specialized graphical presentations for
stereotypes. This eases the communication between UML
and IEC 61131-3 developers.

8. References

[1] UML V1.4 draft, OMG document number ad/2001-02-14

[2] B. Selic and J. Rumbaugh, Using UML for Complex Real-
Time Systems, ObjecTime Limited, 1998,
http://www.objectime.com/otl/technical/umlrt.html

[3] Programmable controllers - Part 3: Programming languages
(IEC 61131-3: 1993)

[4] B. Selic, G. Gullekson, P.T. Ward, Real-Time Object-
Oriented Modeling. Wiley, New York, 1994

[5] Rational Software Corp., Rational Rose RealTime Users
Guide, 1999

[6] Morgan Björkander, Real-time systems and the UML, Invited
Talk, Workshop Object Oriented Modeling of Embedded
Realtime Systems 2 (OMER-2), May 2001, Herrsching a.
Ammersee

[7] T. Heverhagen, R. Tracht, Negotiation Scenarios between
autonomous Robot Cells in Manufacturing Automation: A
Case Study, Proc. of Tunisian-German Conference Smart
Systems and Devices (SSD),
Hammamet, March 2001, pages 499-504

[8] T. Heverhagen, R. Tracht, Integrating UML-RealTime and
IEC 61131-3 with Function Block Adapters, Proc. IEEE Int.
Symp. on Object Orient. Realtime Computing (ISORC2001),
May 2-4, 2001, IEEE Computer Society. pages 395-402

Submitted to 1st International Conference on Information Technology in Mechatronics (ITM’01)
http://mecha.ee.boun.edu.tr/itm

[9] T. Heverhagen, R. Tracht, Implementing Function Block
Adapters, Workshop Object Oriented Modeling of Embed-
ded Realtime Systems 2 (OMER-2), May 2001, Herrsching
a. Ammersee, Report Nr. 2001-03, University of the Federal
Armed Forces Munich. pages 11-18

[10] T. Heverhagen, R. Tracht, Echtzeitanforderungen bei der
Integration von Funktionsbausteinen und UML-RT Cap-
sules, PEARL 2001, Workshop of the real-time Working
Group of the German Informatics Society, 22./23.11.2001,
Boppard am Rhein, to appear, in german
http://www.real-time.de/real-time/prog/p2001pvor.html

