
Accepted for IEEE International Symposium on Object Oriented Realtime Computing (ISORC 2001)

Integrating UML-RealTime and IEC 61131-3 with
Function Block Adapters

Torsten Heverhagen, Rudolf Tracht
University of Essen, Germany, FB 12, Industrial Automation

Torsten.Heverhagen@uni-essen.de, Rudolf.Tracht@uni-essen.de

Abstract

In this paper we introduce a new UML stereotype, the
Function Block Adapter (FBA), which is responsible for
the connection of UML-RealTime capsules and function
blocks of the IEC 61131-3 (standard for PLC
programming languages). FBAs contain an interface to
capsules as well as to function blocks and a description of
the mapping between these interfaces. For this description
a special FBA-language is provided. The FBA-language is
easy to use both to UML-RealTime and to IEC 61131-3
developers, so they can unambiguously express the
interface mapping. An important advantage of the FBA-
language is the possibility to use it at an early design state
of the UML-RealTime system. We explain our concept of
FBAs by an application to a realistic manufacturing
system.

1. Introduction and Motivation

Today’s industrial manufacturing systems have to face the
problem of fast changes in demand of products and in the
product spectrum. One solution for getting a more flexible
structure of production lines is the concept of autonomous
and cooperative production units, which is taken from the
idea of holonic manufacturing systems [7].
At the University of Essen an assembly line case study is
being developed, which consists of 3 autonomous,
cooperative assembly robot cells, a part storage, a product
storage, a quality control system, and a transport system.
An outline of the case study is shown in Figure 1.
The transport system consists of a belt conveyor on which
special pallets are mounted and a Programmable Logic
Controller (PLC). The PLC is not shown in Figure 1. The
special pallets are prepared to take up parts and products
for transportation.
In this paper, products are called with upper letters like A,
B, and C, and parts are called with lower letters like d, e,

and f. Products consist of parts. A product of type A, for
example, consists of parts e and d. In our case study,
product A is an electrical light switch for surface
mounting. It consists of the parts switch box and switch
button, which we call d and e, respectively.
The part storage is located at the beginning of the
production line. It consists of a storage area for parts and a
palletizing robot. When an assembly robot needs parts, the
transport system carries empty pallets to the part storage,
tells the part storage to put the needed parts on the pallet
and carries the pallet to the assembly robot cell.
The assembly robot cell consists of a part storage area, a
product storage area, an assembly area, the robot, and an
industrial PC (IPC). The IPC (not shown in Figure 1)
manages and controls the assembly robot cell. The object
oriented IPC-program is designed with UML-RealTime.
The assembly robot is able to
(1) take parts from a pallet and put it on the part storage

area,
(2) assemble the parts to a product, and
(3) put assembled products to a pallet or the product

storage area.
When an assembled product should be carried to the
quality control system, the IPC-program asks the transport
system for an empty pallet and tells it to carry the product
to the quality control system. This transport request is
described in more detail in section 2.
The quality control system consists of a vision system
with camera and image processor. It is responsible for the
decision if an assembled product should be carried to the
product storage or to the rejects.
The product storage consists of a palletizing robot and a
product storage area.
Each assembly robot cell has the same product spectrum.
The number of assembly robot cells working
simultaneously depends only on the quantity of demanded
products. When this quantity exceeds the capacity of all
existing assembly cells, it is also possible to extend the
manufacturing system with new assembly robot cells or to

raise the productivity of existing assembly robot cells with
improved components.
In cases like mentioned above our approach is to use
UML-RealTime for the development of new components.
The integration into an existing IEC 61131-3 environment
is then modeled with Function Block Adapters (FBAs),
which we introduce in this paper.
Without FBAs the integration of new components must be
done at a very technical level. Depending on the PLC-
hardware the communication with PLCs can be
established over fieldbus systems, serial interfaces, or
digital inputs and outputs. The description of which UML-
signals correspond to which PLC software interfaces (IEC
61131-3) is often left out. Instead a developer must extract
this information out of low level C code.
With FBAs a developer can describe the mapping of
UML-RealTime to PLC software interfaces without
knowledge about how the hardware communication is
realized.
Every IEC 61131-3 program can be viewed as a Function
Block with input and output variables. (In this paper we
only discuss Function Blocks defined in IEC 61131-3.) So
with a FBA every IEC 61131-3 program can be adapted.
FBAs are applied during the object oriented design phase.
Technical details are added later in the implementation
phase.
To illustrate FBAs by an example we at first pick a small
scenario out of our case study (section 2). We assume, that
the transport system is described by a Function Block and
the assembly robot cell X is described by UML-RealTime.
The Function Block interface is discussed in section 3. For
better understanding we show only those parts of the
interface, which are needed for our example scenario. This
is the same for the UML-RealTime interface explained in

section 4. In section 5 we introduce our
concept of a Function Block Adapter (FBA),
which is the main contribution of this paper.
In section 6 we discuss related work, give a
summary and close this paper with an outline
of our future work in this area.

2. The Example Scenario

To explain FBAs by an example we use a
small scenario out of our case study. For this
scenario only a part of the case study shown
in Figure 1 is necessary. This part is shown
in Figure 2.
We assume that the assembly robot X has
produced a product of type A. Now the
product must be transported to the quality
control. Therefore, assembly robot X sends a
transport request to the transport system.
This transport request contains the
information about the type, sender, and

receiver of the product, which is A, assembly robot X, and
quality control, respectively. When the transport system
receives the request, it needs some time to coordinate the
transport request with transport requests of other stations.
Much more time is spent on the fact, that a pallet, which
can take up the product, has to be carried to the assembly
robot.

When such a pallet has arrived at the assembly robot X,
the transport system tells the assembly robot to put the
product on the pallet. This also needs some time for the
robot to perform its movements. During this time the
transport system may not move the pallet. It has to wait
until the assembly robot sends a pallet free signal. Then
the transport system can carry the pallet to the quality
control, where a similar communication takes place.

part storage assembly robot Y

assembly robot X assembly robot Z product storage

belt conveyor
with pallets

vision
system

quality control

explanation of symbols

robot

product storage
area

part storage area

assembly area

Figure 1. Outline of the assembly line case study

assembly robot X

vision
system

quality control

Figure 2. Considered part of the case study

In the following we concentrate on the communication
between the assembly robot and the transport system. This
communication consists of the three signals
(1) transport request,
(2) put product,
(3) pallet free.
The next two sections explain how these signals are
modeled in Function Blocks (section 3) and UML-
RealTime (section 4).

3. The Function Block Interface

As stated in section 1 each IEC 61131-3 program can be
viewed as a Function Block. In Figure 3 the Function
Block for the transport system is displayed. Its name is
TransportSystem.
It contains four input variables Type_IN, StationNr_IN,
Take_IN, OK_IN and four output variables Type_OUT,
StationNr_OUT, Give_OUT, OK_OUT.
In the PLC system product and part types are called with
numbers. Therefore Type_IN and Type_OUT are integer
variables. They are used for product and part numbers in
transport requests. Stations like robot cells or the quality
control system are also called with
numbers. In transport requests
StationNr_IN and StationNr_OUT contain
the information about the participating
stations. They are of type integer.
Furthermore there are two Boolean
variables OK_IN and OK_OUT which are
used for acknowledgements in transport
requests. The Boolean variable Take_IN is
used to signal the transport system with a
low-high-edge, that the station given in
StationNr_IN wishes to put a product or
part given in Type_IN on a pallet. After a
low-high-edge of signal Take_IN the
transport system awaits the acknowledge with a low-high-
edge of OK_IN. Then with this acknowledge the
destination station for the product or part should be
provided in StationNr_IN. Give_OUT is a Boolean
variable used by the transport system to signal the station
given in StationNr_OUT that it may put the product or
part given in Type_OUT on a pallet.
The transport request signal (1) from our
example scenario is shown in Figure 4 by a
timing diagram. Such timing diagrams are the
normal way for PLC developers to show valid
assignments of input and output variables of
Function Blocks.
In timing diagrams time is going from left to
right. On the very left side the used variables
are written. The vertical lines mark special
points of time which we need in the following

for our discussion.
t1 is the time when the signal transmission of the transport
request from the assembly robot X to the transport system
starts. t2 is the time when the low-high-edge is applied to
Take_IN. t2 = t1 + 2 ms (milliseconds) to make sure that
the data on Type_IN (number of product A) and
StationNr_IN (number of assembly robot X) is valid. The
transport system acknowledges the data input on t3 with a
low-high-edge on OK_OUT. With this edge the input
signals are reset by the assembly robot. The time between
t2 and t3 is determined by the PLC. This is the same for the
duration of the OK_OUT signal which ends with t4. On t4

the assembly robot gives the information about the
destination for the product A. t5 has the same reason like

t2. It is to make sure that the input data on StationNr_IN
(number of the quality control station) is valid. t5 = t4 + 2
ms. On t6 the transport system acknowledges the data
input with a low-high-edge on OK_OUT. With this edge
the input signals are reset by the assembly robot. With t7

the transmission of the transport request is finished.
After this transmission the transport system needs some

TransportSystem

Type_IN

StationNr_IN

Take_IN

OK_IN

Type_OUT

StationNr_OUT

Give_OUT

OK_OUT

INT

INT

BOOL

BOOL

INT

INT

BOOL

BOOL

Figure 3. The Function Block interface

robotXNr qualityControlNr

productA_NrType_IN

StationNr_IN

Take_IN

OK_IN

OK_OUT

t1 t2 t3 t4 t5 t6 t7

Figure 4. Timing diagram for the transport request signal

assemblyRobotX

productA_NrType_OUT

StationNr_OUT

Give_OUT

OK_IN

t10 t11 t12 t13

Figure 5. Timing diagram for the put product signal

_ _

time to provide a pallet for the assembly robot.
When a pallet is arrived at the assembly robot X, the
transport system sends the signal put product to the
assembly robot like stated in section 2. This is shown in
Figure 5. The transmission starts with t10 when the output
data is set (Type_OUT = number of product A;
StationNr_OUT = number of assembly robot X). With the
low-high-edge on Give_OUT at t11 the signal is sent and
valid.
Now the robot needs time to put the product on the pallet.
If this is done and the robot arm is out of the collision
zone of the transport system, the robot signals pallet free
at t12 for 2 ms. With t13 the transmission is finished.
In this section we have explained how a PLC developer
would describe software interfaces of the transport system
needed for our example scenario. The next section
explains the UML-RealTime software interface of the
assembly robot X.

4. The UML-RealTime Interface

When object oriented systems are built it is a good idea to
introduce a software system architecture at an early design
state. An outline of the software architecture is shown in
Figure 6.
In this paper we use a special UML dialect called UML-
RealTime or UML-RT. An introduction to UML-RT is
given in [2]. UML-RT is very similar to ROOM [5] which
is in fact the predecessor. A tool for modeling with UML-
RT is Rational Rose RealTime. Figure 6 does not use the
correct UML-RT syntax because it would go in too much
detail to describe the complete architecture. The main idea
of the architecture shown in Figure 6 is the use of the
mediator design pattern [1], which results in a more loose
coupling between system components. The system
mediator encapsulates the communication between system
components. As a consequence the communication
between assembly robot X and the transport system is
established over the system mediator. Therefore in this
section we explain the communication between the
assembly robot X and the system mediator, which defines
the assembly robot interface.
We chose UML-RT because of its clear separation of
interface and implementation. UML-RT uses special
stereotypes to specify interfaces of active objects. Instead
of normal classes capsules are applied to model an active
class. A capsule communicates over ports with its
environment. In Figure 7 two capsules SystemMediator
and AssemblyRobot are displayed. Ports are shown in a
new area of the capsule class symbol below the area for
operations. Capsule SystemMediator has no visible
attributes or operations, but two ports called
~transportSystemPort and assemblyRobotXPort. Capsule
AssemblyRobot has one port called ~transportSystemPort.

Over ports only defined signals can be sent or received.
The signals of a port are defined by protocols. Protocols
are associated to ports. In Figure 7 two associations with
stereotype <<port>> are visible which connect port
~transportSystemPort of capsule AssemblyRobot and
assemblyRobotXPort of capsule SystemMediator with the
protocol TransportProtocol. The ~transportSystemPort of
capsule SystemMediator is specified in more detail in

section 5. TransportProtocol contains two incoming
signals transport_request and pallet_free and one
outgoing signal put_product. With this a SystemMediator
can send signal put_product and receive the signals
transport_request and pallet_free over port
assemblyRobotXPort. If a port name begins with a tilde ~
this port is called conjugated. This means, that the signal
direction is inverted. For example an AssemblyRobot can
send the signals transport_request and pallet_free and
receive signal put_product over port

aMediator

assembly robot X part storage

product storage

quality control

transport system

assembly robot Y

assembly robot Z

Figure 6. Software system architecture

<<Capsule>>
SystemMediator

~transportSystemPort

<<Protocol>>
TransportProtocol

transport_request
pallet_free

put_product

<<port>>

assemblyRobotXPort

<<port>>

~transportSystemPort

assemblyRobotXPort

<<Capsule>>
AssemblyRobot

~transportSystemPort

Figure 7. Class diagram

TransportRequestData

sender: AnyStation
receiver: AnyStation
type: PartType

getSenderID : int
getReceiverID : int
getPartTypeID : int

PutProductData

sender: AnyStation
type: PartType

setSender(int id)
setPartType(int id)

Figure 8. Data classes

~transportSystemPort.
A signal is specified with its name and a data class. The
data class of signal transport_request is
TransportRequestData (Figure 8). The data class of signal
put_product is PutProductData. TransportRequestData
contains complex attributes for sender, receiver
(destination) and type (product type) of the transport
request. To ease the access of identifiers used in the
environment of the manufacturing system there are several
accessing methods provided (getSenderID, getReceiverID,
getPartTypeID). The information of class PutProductData
is set by setting methods (setSender, setPartType). Such
accessing methods are often used to translate between
different nomenclatures. Signal pallet_free doesn’t need a
data class.
Connections between ports are
shown in special diagrams called
structure diagrams. The structure
diagram showing the connection
between the ~transportSystemPort
of AssemblyRobot and the
assemblyRobotXPort of
SystemMediator (connector1) is
displayed in Figure 9.
A structure diagram is similar to a
collaboration diagram. Both show
class roles of objects. In structure
diagrams associations are drawn
between port symbols. Such
associations are called connectors.
A normal port is displayed as a black rectangle and a
conjugated port as a white rectangle on the boundary of
class roles. With connector1 a communication between
capsules like displayed in Figure 10 is possible.
The sequence diagram of Figure 10 shows the necessary
messages to fulfill the requirements of our example

scenario. If we forget the relaying time of the mediator,
the sending of signal transport_request should be in ideal
circumstances the time t2 of the timing diagram in Figure
4. Note that the arrow of this message is single sided. This
means, that the message is asynchronous. The sender does
not wait for the receiver of the message. The transport
system responds at time t11 from Figure 5 with the signal
put_pallet. This is a synchronous message. The sender of
the message waits for an acknowledgement. At t12

assembly robot X acknowledges with pallet_free. The
scenario is over.
The next section explains the missing connection between
the capsule SystemMediator and the Function Block
TransportSystem through a Function Block Adapter.

5. Introducing a Function Block Adapter

The last two sections explained the interface of the
transport system and of the assembly robot. The missing
link between them is a Function Block Adapter illustrated
in Figure 11.

In Figure 11 we show an extended structure
diagram with a capsule, a Function Block
Adapter, and a Function Block. The capsule is
the system mediator known from section 4.
The system mediator is connected through the
port ~transportSystemPort to the Function
Block Adapter called TransportSystemFBA.
TransportSystemFBA contains a port called
transportPort and connection lines to the
interface variables of the Function Block
TransportSystem. In the structure diagram the
Function Block TransportSystem is
instantiated with the name aTransportSystem.
The Function Block Adapter is responsible for
the translation of the signals coming from port
transportPort to assignments of the input and

output variables of TransportSystem. From the side of the
transport system the FBA looks like a Function Block.
The variables of the transport system are assigned like
explained in Figure 4 and Figure 5. From the view of
UML-RT the FBA looks like a capsule. The system
mediator can relay the messages to the

/assemblyRobot:
AssemblyRobot

/systemMediator:
SystemMediator

~transportSystemPort assemblyRobotXPort

transportSystemPort

connector1

Figure 9. Structure diagram

assemblyRobotX
/assemblyRobot:
AssemblyRobot

aMediator
/systemMediator:
SystemMediator

transport_request

put_product

pallet_free

t2

t11

t12

Figure 10. Sequence diagram

/systemMediator:
SystemMediator

/transportSystemFBA:
TransportSystemFBA

TransportSystem

aTransportSystem

Type_IN

StationNr_IN

Take_IN

OK_IN

Type_OUT

StationNr_OUT

Give_OUT

OK_OUT

~transportSystemPort
transportPort

assemblyRobotXPort

Figure 11. Extended structure diagram with a FBA

TransportSystemFBA as it would do it to a transport
system capsule which is directly designed in UML-RT.
The relayed signals are shown in Figure 12.
Now we can determine the timestamps of the timing
diagrams of section 3 more realistic. Of course the FBA
cannot forget the delay time between t1 and t2 like
suggested in Figure 10. So in ideal circumstances the
incoming of signal transport_request over port
transportPort is the same time like t1.
The timestamps t11 and t12 are also only correct if we
forget the relaying time of the FBA. But if we remember,
that we are in the object oriented design phase, such
thoughts can be moved to the implementation phase. At
first we look at how the requirements for the mapping
between a capsule and a Function Block can written
down.
The class TransportSystemFBA is shown in Figure 13. It
is of stereotype <<FunctionBlockAdapter>>. This
stereotype has the same interface like capsules.
Additional attributes are used to represent the input
and output variables of the adapted Function Block.
These attributes are displayed like normal attributes
of UML classes.
The behavior of a FBA is expressed by a special
language - the FBA-Language.

5.1 The FBA-Language

The FBA-Language defines operations which are
called when signals arrive from a port or from the
Function Block. We distinguish between operations
for the translation from UML-Signals to Function-
Block-Signals (FB-Signals) and operations for the
translation from FB-signals to UML-Signals.
In operations of the first category two functions are
needed. Delay(time) is a function that delays the
execution of following commands for the time given
as a parameter. WaitFor(bool, time) is a function that
delays the execution of following commands until the
Boolean expression given as first parameter evaluates

from false to true. The second parameter is a timeout,
which assures that the FBA is not able to hang up.
Additionally to these two functions we only need
assignments. In assignments access to properties of the
FBA class and used data classes is possible. Properties of
UML classes are Attributes, Operations, and
AssociationEnds. An example operation for the translation
of the UML-Signal transport_request to the FB-Signal
specified in Figure 4 is the following:
(1) ON UML-Signal transport_request PORT

 transportPort
(2) PRECONDITION OK_OUT = false
(3) BEGIN
(4) Take_IN := false;
(5) OK_IN := false;
(6) Type_IN :=

 transport_request.getPartTypeID();
(7) StationNr_IN :=

 transport_request.getSenderID();
(8) Delay(2ms);
(9) Take_IN := true;
(10) WaitFor(OK_OUT, 1s);
(11) Take_IN := false;
(12) Type_IN := 0;
(13) StationNr_IN := 0;
(14) WaitFor(OK_OUT = false, 1s);
(15) StationNr_IN :=

 transport_request.getReceiverID();
(16) Delay(2ms);
(17) OK_IN := true;
(18) WaitFor(OK_OUT, 1s);
(19) OK_IN := false;
(20) StationNr_IN := 0;
(21) WaitFor(OK_OUT = false, 1s);
(22) END
(23) POSTCONDITION OK_OUT = false
In the following, if we refer to a timestamp tx these
timestamps are given in Figure 4, Figure 5, and Figure 12.
Line (1) starts with "ON UML-Signal" to denote that this

assemblyRobotX
/assemblyRobot:
AssemblyRobot

aMediator
/systemMediator:
SystemMediator

aTransportSystemFBA
/transportSystemFBA:
TransportSystemFBA

transport_request

put_product
put_product

pallet_free
pallet_free

transport_request t1

t11

t12

Figure 12. The sequence diagram with a FBA

<<FunctionBlockAdapter>>

TransportSystemFBA

Type_IN : int
StationNr_IN : int
Take_IN : bool
OK_IN : bool
Type_OUT : int
StationNr_OUT : int
Give_OUT : bool
OK_OUT : bool

transportPort

<<Capsule>>

SystemMediator

~transportSystemPort

<<Protocol>>
TransportProtocol

transport_request
pallet_free

put_product

<<port>>

~transportSystemPort

<<port>>

transportPort

assemblyRobotXPort

Figure 13. Class diagram with a FBA

operation translates from a UML-Signal to a FB-Signal.
"transport_request" is the name of the UML-Signal to
translate. Furthermore it is necessary to define the port of
the signal. Because we did not restrict a FBA to have only
one port, signals with the same name but different
meaning can come through different ports. So with
"PORT transportPort" the port of signal transport_request
is defined.
Line (2) is an OCL precondition which is optional.
With line (3) the translation of the message starts. In
Figure 4 this is denoted with time t1.
Lines (4) to (7) assign values to the input variables of
Function Block TransportSystem. With signal
transport_request an instance of data class
TransportRequestData is associated. In our FBA-
Language access to properties of this data class instance is
given with the use of the UML-Signal name as instance
name. So the expression
"transport_request.getPartTypeID()" accesses the
operation getPartTypeID of class TransportRequestData.
Expressions like this are known from the Object
Constraint Language (OCL) of UML. Nevertheless the
FBA-Language cannot be a subset of the OCL because
OCL is not a programming language. OCL is a pure
expression language [6]. Most expressions of our FBA-
Language have OCL-Syntax.
Assignments in the FBA-Language take no time. This
means, that from line (3) to line (7) there is no time delay.
In line (8) the function "Delay(2ms)" delays time for 2
milliseconds. This is the delay between t1 and t2.
At t2 the input variable Take_IN is set with line (9)
"Take_IN := true;"
In line (10) the command "WaitFor(OK_OUT, 1s);" waits
for the output variable OK_OUT to become true. If this
takes more than a second, an error message is generated
and the message translation is cancelled. In normal
operation after line (10) the time t3 is reached.
Line (11) to (13) assign the new values to input variables
as given in Figure 4.
With a high-low-edge of OK_OUT (line (14)) the
destination of the product is given in line (15). After a
time delay of 2 milliseconds in line (16) the PLC is forced
to take in the destination data with line (17). Line (18) is
the same like line (10). Lines (19) and (20) reset the input
variables OK_IN and StationNr_IN. Line (21) waits for
the PLC to assure that the message take over is finished.
Line (22) denotes time t7 of Figure 4. The postcondition is
in line (23).
The last operation described how the UML-Signal
transport_request is translated into a FB-Signal. Next we
show an operation of the second category for the
translation of FB-Signals into UML-Signals. For
operations like this additional functions SendSync(port,

send_signal, receive_signal, timeout) and SendAsync(port,
send_signal) are needed, which send asynchronous or
synchronous messages through ports of the FBA.
Furthermore declarations of instances of signals are added
which are used in calls of the functions SendSync and
SendAsync. SendAsync sends an asynchronous message
send_signal through port port. This asynchronous sending
of signal send_signal takes no time. If SendSync is used
instead and receive_signal is given as an incoming signal
of port port and a timeout is set, the function at first sends
send_signal and then waits for receive_signal.
An example of an operation of the second category is the
following:
(1) ON FB_Signal Give_OUT
(2) PRECONDITION (Type_OUT <> 0) &

(Station_Nr_OUT <> 0)
(3) SIGNALS
(4) sig1: TransportProtocol.put_product;
(5) sig2: TransportProtocol.pallet_free;
(6) BEGIN
(7) OK_IN := false;
(8) sig1.setSender(StationNr_OUT);
(9) sig1.setPartType(Type_OUT);
(10) SendSync(transportPort, sig1, sig2, 60s);
(11) OK_IN := true;
(12) Delay(1ms);
(13) OK_IN := false;
(14) END
(15) POSTCONDITION Give_OUT = false
The operation starts with "ON FB_Signal Give_OUT"
which means that the operation is invoked when
Give_OUT becomes true. Give_OUT could also be a
Boolean expression. Lines (3) to (5) define to signal
instances sig1 and sig2. Line (6) denotes time t11. Lines
(7) to (9) set necessary variables. Access to properties of
data classes is given by the name of a signal instance, a
dot, and the property name. Line (10) is the function call
of SendSync. The UML-Signal transport_request is sent at
t11. The function SendSync now waits for signal
pallet_free. After receiving of signal pallet_free time t12 is
reached. Lines (11) to (13) tell the PLC the successful
translation of the FB-Signal. At (14) time t13 is reached
and the operation is finished.
The two operations explained above are typical examples
for translation operations of FBAs. All operations consist
in their body of the following elements:
• assignments to variables of the associated Function

Block
• access to properties of data classes of signals
• calls of the functions

- Delay(time)
- WaitFor(bool_expression, timeout)
- SendAsync(port, send_signal)
- SendSync(port, send_signal, receive_signal,

timeout)

The main purpose of the FBA-Language is to give
developers of both UML-RT and IEC 61131-3 a common
language for the specification of adapters between
components of their models. The FBA-Language is not
designed to specify behavior of Function Blocks or of
capsules. This means that a FBA does not specify what
happens after a signal is translated and sent to a capsule or

to a Function Block. This
is the reason why we left
control structures like IF
THEN ELSE and loops out
of the FBA-Language. If
an UML-Signal is such
complex that the FBA-
Language is not sufficient
for the translation to FB-
Signals, we prefer to
redesign the UML-RT
interface instead of
extending the language.
The reason for this is, that
the UML-RT system is
applied to an existing
system. The UML-RT

developer should try to keep his design as conform as
possible to the design of the existing system.
Operations of FBAs are documented in the operations area
of the class symbol. In Figure 14 the symbol of the
TransportSystemFBA is given. Below the keyword
OnUMLSignal the operations of the first category are
listed. Their name consist of <signal name>@<port
name>. Operations of the second category are listed below
the keyword OnFBSignals. Their name is the Boolean
expression for the FB-Signal.
With FBAs and their language we only specify the "What"
should be done to adapt UML-Signals to FB-Signals and
reverse. The "How" it is to be done is the responsibility of
the developer who implements FBAs.

6. Summary and Future Work

Within this paper we introduced our concept of Function
Block Adapters. We have shown that with Function Block
Adapters the integration of systems designed in UML-RT
into an existing PLC environment can be easily specified.
The specification of a Function Block Adapter is
completely hardware-independent. It describes only the
"What" should be done for the integration and not the
"How". This aspect is very important because the "How"
is highly hardware-dependent.
An approach related to our FBA-Language is proposed in
the Statemate Approach [4]. In Statemate reactive mini-
specs are used to specify data-driven activities. Data-
driven activities are continuously (cyclic) executed, which

is expressed with TICKs in a mini-spec. Conditions are
evaluated in IF THEN ELSE statements. In our approach
FBA-operations are only executed on associated signal
events, which is a different semantic than data-driven
activities have. For this reason we introduced the notion of
a FB-Signal. Conditions on data-values are evaluated with
the WaitFor function. The decision if conditions are
computed continuously or interrupt-driven is left to the
implementation. Whereas data-driven activities are
suitable for raw sensor data the FBA-Language is easier to
use with IEC 61131-3 Function Blocks. We assume that
raw sensor data is computed within a Function Block.
With a specification given in the FBA-Language (Section
5.1) a developer has an unambiguous description of the
requirements for connecting the UML-RT system to the
PLC. Because of the simplicity of the FBA-Language both
UML-RT developers and IEC 61131-3 developers can
understand and validate the specification.
Currently, we are interested in the development of an
implementation framework for Function Block Adapters.
This framework contains
• an integration process,
• class and Function Block libraries,
• design patterns,
• a FBA-Language parser and compiler,
• a simulation environment for validation purposes.
Furthermore we plan to adapt Function Block Adapters to
IEC 61499. Function Blocks defined in IEC 61499
distinguish between event input and output signals and
data input and output signals. These separation would ease
our definition of FB-Signals.

7. References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns, Addison Wesley 1995

[2] B. Selic and J. Rumbaugh, Using UML for Complex Real-
Time Systems, ObjecTime Limited, 1998,
http://www.objectime.com/otl/technical/umlrt.html

[3] Programmable controllers - Part 3: Programming languages
(IEC 61131-3: 1993)

[4] D. Harel and M. Politi, Modeling Reactive Systems with
Statecharts, McGraw-Hill, New York 1998

[5] B. Selic, G. Gullekson, P.T. Ward, Real-Time Object-
Oriented Modeling. Wiley, New York, 1994

[6] Object Constraint Language Specification, version 1.1, 1997,
http://www.software.ibm.com/ad/ocl

[7] T. Heverhagen, R. Tracht, Negotiation Scenarios between
autonomous Robot Cells in Manufacturing Automation: A
Case Study, Proc. of Tunisian-German Conference Smart
Systems and Devices, Hammamet, March 2001

<<FunctionBlockAdapter>>

TransportSystemFBA

Type_IN : int
StationNr_IN : int
Take_IN : bool
OK_IN : bool
Type_OUT : int
StationNr_OUT : int
Give_OUT : bool
OK_OUT : bool

transportPort

OnUMLSignal
transport_request@transportPort

OnFBSignal
Give_OUT

Figure 14. FBA class

