
A Profile for Integrating Function Blocks
into the Unified Modeling Language

Torsten Heverhagen1, Rudolf Tracht2, Robert Hirschfeld3

University of Duisburg-Essen, Automation and Control, Schuetzenbahn 70,
D-45127 Essen, Germany

1 torsten.heverhagen@uni-essen.de
2 rudolf.tracht@uni-essen.de

3 DoCoMo Euro-Labs, Future Networking Lab, Landsberger Strasse 308-312,
D-80687 Munich, Germany

hirschfeld@docomolab-euro.com

Abstract. In this paper we introduce a new profile for Function Block Adapters
(FBAs), which are responsible for the connection of Unified Modeling Lan-
guage (UML) ports and function blocks of non-UML languages. FBAs provide
interfaces to ports, to function blocks, and a description of the mapping be-
tween these interfaces. Both UML and function block developers can use a spe-
cial easy-to-use FBA description language to express these interface mappings
in a concise manner. Our FBA language offers the important advantage of high-
level descriptions during early phases of the UML development process. This
paper proposes a mapping of FBA-semantics to standard UML-semantics. The
application of FBAs to function block oriented languages like IEC 61131-3,
IEC 61499, or Matlab/Simulink™ is discussed by using the approach of the
Model Driven Architecture.

1 Introduction

In engineering disciplines, especially within time driven systems, software languages
are often based on function blocks. Examples are languages for programmable con-
trollers [1] or simulation environments like Matlab/Simulink™ [2]. Many commercial
software tools in the process industry also use function blocks as program organiza-
tion units. Despite minor differences the concept of function blocks is the same in all
considered function block oriented languages. This concept is described in more detail
in section 1.1.

The use of object oriented technologies for event driven systems is widely ac-
cepted. Analysis and design of software for event driven systems is done mostly with
the UML. Technical systems often consist of both time driven and event driven parts.
In such cases it is useful to combine the UML with function block oriented languages.
Examples for such combinations are given in this paper and in [3, 4, 5, 6, 7].

It is not our goal to redefine or integrate the behavioral part of function block ori-
ented languages within the UML. This behavioral part is often described by differen-
tial equations or by other languages taken from engineering disciplines, which are

complicated to integrate into the UML. One advantage of using function blocks is
their separation of external interface and internal implementation. With that it is only
necessary to model function block interfaces within UML. The internal behavior can
be modeled outside the UML with the help of a function block oriented language.

For the integration of function blocks into the UML it is very convenient to use
ports. The port concept is known from [8, 9]. It was first introduced into the UML
with version 2.0 [10]. Section 1.2 explains the port concept in more detail. Similar to
function blocks, one advantage of using ports is their clear separation of interface
descriptions of a class from its internal behavior description. Together with protocol
statecharts, ports define protocols, which we call UML protocols throughout the pa-
per. This naming convention is to distinguish UML protocols from protocols of func-
tion blocks, which we call FB-protocols in this paper.

The integration of function blocks into the UML is done by providing a special
kind of protocol adapters, which we call function block adapter (FBA). They are
firstly introduced in [3]. FBAs are responsible for the mapping of UML protocols to
FB-protocols. To support a Model Driven Architecture (MDA) like approach this
mapping is described independently of platform specific aspects. Section 2 explains
the concept of FBAs in more detail from a user’s point of view. In [7] the first attempt
to define the FBA as a stereotype within version 1.4 of the UML was published. Since
the port concept was introduced into the UML version 2.0 it was necessary to rework
our definition of the FBA-stereotype resulting in a new profile, which we call Func-
tionBlockAdapters.

In [7] FBAs are only applied to function blocks of IEC 61131-3 (languages for
programmable controllers). In this paper we would like to generalize this stereotype to
adapt function blocks of other function block oriented languages. We show, that the
concept of a function block can also be found in simulation environments like Mat-
lab/Simulink™. Sections 3 and 4 shortly introduce the FBA-profile and discuss the
influence of generalizing the profile to other function block oriented languages.

The generalization of FBAs to mathematical languages based on a continuous time
model like in Matlab creates a need for comparing FBAs with hybrid modeling tech-
niques. This and a discussion of related work is done in section 5. Finally, section 6
concludes our paper.

1.1 Function Block Oriented Languages

Within this section we introduce our generalized function block (FB) model and give
some examples of function blocks in different function block oriented languages.
Though the appearance of function blocks differs in function block oriented languages
a common structure can be observed. This structure is given in Fig. 1.

Input
Variables

Output
Variables

Internal Variables

Behavior of the
Function Block

Through Variables

Fig. 1. Structure of a generalized function block

A generalized function block consists of input variables, output variables, through
variables, internal variables, and an internal behavior description of the function
block. Input variables can only be written from outside of an FB. From inside they can
only be read. Output variables can be read and written from inside of an FB and only
be read from outside. Through variables are special shared variables. If through vari-
ables of different FB instances are connected, they do all access the variable con-
nected to the first input of the chain. Through variables are defined in [1]. They are
often called In-Out-variables. If their datatype matches, output variables can be con-
nected to input variables by a connector. This is similar to a connection of ports with
matching protocols.

Unlike simple functions, FBs have internal state information that persist the execu-
tion of FB instances. The internal behavior can be driven by continuous [2] or discrete
time [1], or can be event driven [11]. Common to all FBs is that their interface vari-
ables (input, output, and through) continuously provide data values. Communication
with other FBs can only be done by assignments of data values to interface variables.
This communication model is contrary to the one of object orientation, where objects
communicate by message exchange.

Interface variables of FBs cannot be compared to UML attributes. One of the rea-
sons for this is that in object orientation it is not possible to define an attribute, which
can be read and written from outside of the owning class and only be read from inside.
This is required for the definition of input variables. Another reason is, that attributes
of one class cannot be connected to attributes of another class by the means of con-
nectors.

The best counterpart of interface variables in the UML are ports. Both concepts
provide export interfaces, import interfaces and encapsulate the internal behavior of
FBs and classes respectively. Section 3 discusses the relation between ports and inter-
face variables in more detail. An example of a declaration of interface variables is
given in Fig. 2.

Axis
Execute
Position
Velocity
Acceleration
Deceleration
Jerk
Direction

Axis
Done

CommandAborted
Error

ErrorID

MC_MoveAbsolute
AXIS_REF

BOOL
REAL
REAL
REAL
REAL
REAL

MC_Direction

AXIS_REF
BOOL
BOOL
BOOL
WORD

Execute
Done or CA

input data
output data

Error
ErrorID

Fig. 2. Function block MC_MoveAbsolute and timing diagrams describing its FB-protocol

The FB type MC_MoveAbsolute is taken from [12]. It is a standardized FB type re-
sponsible for the control of a motion of a motor axis to an absolute position. The no-
tation is conformant to [1]. Interface variables are denoted with input pins (left side)
for input variables and output pins (right side) for output variables. Through variables
are marked with dashed lines. Variable names are placed inside of the function block
and datatypes outside. At the right side of this figure three timing diagrams are shown.
The upper one shows that if an error occurs an ErrorID is given. Errors can occur
even when the axis is not in motion. The middle timing diagram explains that after an

execution of a motion is requested, the motion can be completed (signaled in Done) or
aborted (signaled in CommandAborted (CA)). The so called input data is given in the
set of input variables Position, Velocity, Acceleration, Deceleration, Jerk, and Direc-
tion. It is only valid, during Execute is being set. We define the so called output data
as the set of output variables Done, CommandAborted, Error, and ErrorID. Our defi-
nition of input data and output data is only to get more convenient notions for the later
explanations in this paper. The information given in Axis is always valid. With this
information several FBs may work on the same axis. For example, an execution of a
motion can be aborted by another FB. That’s why CommandAborted can raise when
Execute is true.

In Fig. 2 some Boolean variables are used to signal events. This is a common tech-
nique for defining FB-protocols. The information given in Fig. 2 can also be used to
derive a protocol statechart (see also [12]) or a protocol automaton, which can be used
for verification issues [4]. But for FBs it is not necessary to have such kind of trig-
gering variables (Fig. 3).

controller model of axis to
be controlled

actualPosition

-
+

position

FB_ControlLoop

type type

Fig. 3. Function block FB_ControlLoop

 FB_ControlLoop contains a simplified model of a control loop, which could work
inside MC_MoveAbsolute of Fig. 2. The input variable position is connected to a
summation block (denoted as a circle). The second input of the summation block is
actualPosition. The output of the summation block is the difference between position
and actualPosition. This output is connected to the input of the controller block. The
internal behavior of the controller is described with differential equations. This is the
same for the block called model of the axis to be controlled. The output of this block
is also the output of the overall block FB_ControlLoop. FB-diagrams like in
FB_ControlLoop are used in control theory and in simulation tools like Simulink [2].
We would like to emphasize that our generalized function block model also works
with such languages. Input, output, and through variables as well as internal state
information can be observed. The type of inputs and outputs is tool-dependent. For
pure mathematics it is of course the set of real numbers.

An actual development in the field of function block oriented languages is
IEC 61499 [11]. In this standard the concept of function blocks is extended with event
inputs and event outputs. This should ease the application of function blocks to event
driven systems. All data inputs and data outputs must be explicitly connected to an
event input or event output respectively. An example is shown in Fig. 4.

Done
CommandAborted

Error

ErrorID

FB_MoveAbsolute

EVENT

AXIS_REF
REAL
REAL
REAL
REAL
REAL

MC_Direction

EVENT
EVENT
EVENT

WORD

Execute

Axis
Position
Velocity
Acceleration
Deceleration
Jerk
Direction

Fig. 4. Example for an FB type conformant to IEC 61499. The FB is separated into an upper
and a lower part. At the upper part the event inputs and outputs are drawn. The data inputs and
outputs are drawn at the lower part. Because FBs of IEC 61499 don’t have through variables,
Axis is modeled as an input variable and connected to Execute like all other data inputs.

The type EVENT can be seen as an abstraction of the Boolean type. Events are
stored into Boolean Event Input (EI) and Event Output (EO) variables. Compared to
FBs of IEC 61131-3 the interface description of IEC 61499 has richer syntax and
semantics. The generalized FB-model of Fig. 1 can be applied to IEC 61499, if event
inputs are treated as simple Boolean variables.

In the rest of this paper we use the notation of IEC 61131-3. Differences between
function block oriented languages, which are important for our concepts, are discussed
where appropriate.

The following section describes a communication interface of a class, which shall
be the communication partner of MC_MoveAbsolute. For the comparison of both
interfaces it is important to emphasize, that FBs communicate synchronously, whereas
an asynchronous communication model is assumed between ports.

1.2 UML Ports

Ports had been introduced into object oriented systems in [8]. The first approach for
integrating ports into the UML was published in [9]. The port concept we use in this
paper is based on [10]. Instead of explaining this concept again, we give an example
of its application in Fig. 5.

NewPosition(float)

«interface»
IMoveControlEnded(MCData)

TimeOut(MCData)
Error(MCData)

«interface»
IMoveClient

Done: bool;
CommandAborted: bool;
Error: bool;
ErrorID: unsigned short;

MCData

S0

S1

Ended
or

Timeout

NewPosition

Error
MC_Client

mcPort

IMoveClient

IMoveControl

Error

Fig. 5. Classes, interfaces, and a protocol statechart describing the UML protocol

The class MC_Client must communicate over mcPort with the FB
MC_MoveAbsolute, which was introduced in Fig. 2. The port provides the interface
IMoveClient, so it can receive the messages Ended, TimeOut, and Error. All contain a
parameter of type MCData. MCData has attributes to take up the output data of
MC_MoveAbsolute. We assume, that MC_Client is implemented in C++, so the ele-
mentary datatypes of C++ are used. The port requires the interface IMoveControl to
be able to send the message NewPosition. The parameter of type float contains the
new position. We assume, that all other input data is set to constant values, as shown
in Fig. 7. The protocol statechart at the top right corner in Fig. 5 defines valid se-
quences of message transfer over mcPort. After NewPosition was sent, the messages
Ended, or TimeOut are expected. Errors may occur in every state.

The notion of active objects is introduced in [8] and [9]. Such active objects may
interact with their environment using ports. In [10] ports may be added to every ob-
ject. In this paper we assume, that objects containing ports are active objects. We call
a description of the behavior of ports as shown in Fig. 5 a UML protocol. In the next
section we explain how communication between ports and FBs can be described using
FBAs.

2 Function Block Adapters

A direct connection between a port like that shown in Fig. 5 and an FB of type
MC_MoveAbsolute is not possible because of their different protocols. For this reason
a special protocol adapter, a Function Block Adapter (FBA), was introduced in [3].
FBAs contain ports as well as input and output variables. For the mapping between
UML- and FB-protocols a set of translations is defined. Fig. 6 shows an example of an
FBA-class.

MC_FBA

mcPort

IMoveClient

IMoveControl

Execute
Position

Done
CommandAborted
Error
ErrorID

BOOL
REAL

BOOL
BOOL
BOOL

WORD

«Translations»
ErrorTranslation
MoveTranslation

Fig. 6. Function block adapter MC_FBA

MC_FBA maps the UML protocol of clientPort to the FB-protocol of
MC_MoveAbsolute. Output variables of MC_MoveAbsolute are input variables of
MC_FBA and vice versa. clientPort of MC_FBA requires the interface IMoveClient
and provides IMoveControl. The protocol statechart of clientPort should be the same
like given in Fig. 5. ErrorTranslation maps the signal of the input variable Error to
the Error-message of clientPort. MoveTranslation maps the behavior of the middle
timing diagram of Fig. 2 to the messages NewPosition, Ended, and TimeOut. Abort-
Translation maps the message Abort to a signal in the output variable Execute.

An instance of type MC_FBA is able to connect instances of MC_Client and
MC_MoveAbsolute. If a structure diagram of [10] is combined with the function block
language of [1], the connection has a graphical representation like shown in Fig. 7.

a:MC_Client

mcPort

b:MC_FBA

clientPort
NewPosition

Ended
TimeOut

Error

Axis
Execute
Position
Velocity
Acceleration
Deceleration
Jerk
Direction

Axis
Done

CommandAborted
Error

ErrorID

MC_MoveAbsolute

Execute
Position

Done
CommandAborted
Error
ErrorID

Y_Axis

100,0
2,0
2,0
0,0

c

Fig. 7. Structure diagram including an FBA-instance (b) and an FB-instance (c)

An instance a of MC_Client is connected over mcPort with the clientPort of in-
stance b of MC_FBA. The arrows near the connector are only there to illustrate the
message directions. Output and input variables of b are connected to the FB-instance c
of type MC_MoveAbsolute. As usual in the function block language the instance name
in written outside the FB [1]. Most input of c are assigned with constant values. The
Direction input can be left open.

The behavior of MC_FBA is defined by its translations. We also call this type of
translations FBA-translations. FBA-translations are described by a special language,
which we call the FBA-language. This language was designed to be easy to under-
stand by UML-developers as well as by FB-developers. In section 4 we map this lan-
guage to a subset of statecharts. The language contains syntax for assignments to vari-
ables and parameters, wait- and delay-commands, and a send-command. Programs of
this language are assigned as tagged values called translationBody or exceptionBody
to FBA-translations. If there is an error during the execution of translationBody, ex-
ceptionBody is executed. Other tagged values are trigger and signals. In trigger, either
a Boolean expression or a message of a port must be provided. The Boolean expres-
sion must evaluate to true to trigger the translation. In signals, a set of port-messages
is given, which are sent, received, or accessed within the translation.

ErrorTranslation

Trigger: Error

Signals: s1: clientPort.Error

Body: s1.Done := Done;
s1.CommandAborted := CommandAborted;
s1.Error := Error;
s1.ErrorID := ErrorID;
send(s1);

MoveTranslation

Trigger: clientPort.NewPosition

Signals: s1: clientPort.Ended,
s2: clientPort.TimeOut

Body: Position := trigger;
Execute := true;
waitFor(Done OR CommandAborted, T#1s);
s1.Done := Done;
s1.CommandAborted := CommandAborted;
s1.Error := Error;
s1.ErrorID := ErrorID;
Execute := false;
waitFor(NOT (Done OR CommandAborted), T#10ms);
send(s1);

Exception: s2.Done := Done;
s2.CommandAborted := CommandAborted;
s2.Error := Error;
s2.ErrorID := ErrorID;
Execute := false;
send(s2);

The deadline stated in the first waitFor-statement of the MoveTranslation depends
on the maximum possible time for the motion of the Y_Axis (Fig. 7). The syntax for
the time literal T#1s is taken from [1]. We decided to use this syntax because it is
well-established in the field of automation and control.

We’d like to outline that FBA translations describe the mapping independent of
platform-specific requirements. When implementing FBAs it is necessary to use two
programming languages, one object oriented and one out of an FB-oriented language.
More details on platform dependent issues are given in [6].

Sections 3 and 4 introduce the syntax and semantics of FBAs as a UML profile. In
the appendix of this paper we give an example FBA for the function block
FB_ControlLoop (Fig. 3).

3 A Profile for Function Block Adapters

We call the profile, which defines the stereotype FunctionBlockAdapter, Func-
tionBlockAdapters. It contains seven stereotypes which help in the definition of our
FBA-concept. Table 1 lists these stereotypes.

Table 1. Stereotypes of the package FunctionBlockAdapters. In Applied to the metaclass is
given, which is stereotyped. Depends on package lists the packages which are used by the
stereotype.

Stereotype Applied to Depends on package
FBInterface Interface Interfaces (from Basic)
FBPort, FBInPort, Port Ports (from Common)

Stereotype Applied to Depends on package
FBOutPort
FunctionBlock Class Classes (from Common)
FunctionBlock-
Adapter

Class Classes (from Common)

FBATranslation Class Classes, CommonBehavior (from
Common)

FBInterface is a special Interface, which is needed to model input and output vari-
ables of FBs. The interface contains only one operation called ValueChanged. This
operation has only one unnamed parameter that holds the value of an interface vari-
able of an FB. With OCL this could be written as follows:

context FBInterface inv:
 (self.feature->size = 1) &
 (self.feature->forAll(f |

(f.name = 'ValueChanged') &
(f.classifier = Operation) &
(f.parameter->size = 1))

)

The datatype attached to the parameter must be one defined by an FB-oriented lan-
guage. To be able to use such datatypes in UML-interfaces, they must be remodeled
within UML as «datatype», «primitivetype» or «enumeration». Different sets of FB-
datatypes have no influence on our profile FunctionBlockAdapters, so it can applied
to different FB-oriented languages.

FB-ports are the direct counterparts of interface variables of FBs. FBInPort and
FBOutPort inherit from FBPort. They are signal-ports:

context FBPort inv: self.isSignal = true

FBOutPorts require one FBInterface and FBInPorts provide one FBInterface:

context FBInPort inv:
 (self.required->size = 0) &
 (self.provided->size = 1) &
 (self.provided->forAll(i |
 (i.classifier = FBInterface)))

context FBOutPort inv:
 (self.provided->size = 0) &
 (self.required->size = 1) &
 (self.required->forAll(i |
 (i.classifier = FBInterface)))

We assume the behavior of an FB being modeled outside the UML. An FB can be
defined as a class only containing FBPorts:

context FunctionBlock inv:
self.feature->forAll(f |
(f.classifier = FBPort) &

(f.visibility = #public)
)

With this we can model an FB as a UML class as shown in Fig. 8. UML tools with
an extension for FBAs could also allow a notation as shown in Fig. 2.

«FunctionBlock»
MC_MoveAbsolute

IPLC_Bool IPLC_Bool
ExecutePort EndedPort

«FBInPort» «FBOutPort»
«FBInterface» «FBInterface»

Fig. 8. Notation of FB type MC_MoveAbsolute (partially) in a UML-class diagram.

FBAs do have normal ports and FBPorts:

context FunctionBlockAdapter inv:
self.feature->exists(classifier = FBPort) &
self.feature->exists(classifier = Port &

 classifier != FBPort)

UML-tools with extension for FBAs should support a notation like that shown in
Fig. 6 and in Fig. 7.

The behavior of FBAs is described similar to active UML classes by statecharts.
Part of our is to hide this statechart from FBA developers. FBA developers should
describe the behavior by the means of FBATranslations. UML-tools with extension
for FBAs should be able to generate the FBA-statechart out of its FBA-translations.
For this reason we provide a mapping from FBA-translations to statecharts. With this,
the semantics of FBA-translations is defined as a subset of statechart-semantics. The
advantages of doing this is firstly to derive a language which is less complex and eas-
ier to understand, and secondly to prevent FBA developers from putting behavior to
FBAs, which is not related to the task of translating protocols into each other.

In order to attach FBA-translations to FBAs we defined a tagged value of type
FBATranslation named translations. It is tagged to the stereotype FunctionBlockA-
dapter and holds a set of FBA-translations. Within the class-notation of FBAs this set
can be shown in a compartment list as illustrated in Fig. 6.

A set of tagged values is attached to the stereotype FBATranslation. They are listed
in Table 2.

Table 2. Tagged Values of stereotype FBATranslation

Name Type Multiplicity

fba FunctionBlockAdapter 1
isOrthogonal Boolean 1
trigger Event 1
signals Signal 1..*
translationBody String 1
exceptionBody String 0..1
fbProtocol ProtocolStatechart 0..1

fba contains the class of the FBA to which the translation belongs. Each translation
must belong to exactly one class.

If isOrthogonal is set, the translation is executed concurrently to other translations
of the FBA. In the example of section 2, all translations are orthogonal.

The event in trigger is either a SignalEvent of a port or a ChangeEvent of an inter-
face variable. It triggers the execution of a translation.

In signals all port-signals are listed, which must be accessed, received, or sent
within the translation. If the trigger was a port-signal, it must be in the list of signals
under the name trigger.

In translationBody and exceptionBody a string is given, which conforms to the
syntax of the FBA-language. The BNF-grammar of this language is given in [5]. Ex-
amples of this language are already introduced in section 2. It is forbidden to use wait
and delay statements in exceptionBody.

In fbProtocol a protocol statechart can be given, which describes all valid se-
quences of ChangeEvents of interface variables accessed within the translation. In this
paper we don’t give an example for such a statechart, because it can be derived from
the timing diagrams of Fig. 2. In [4] was shown, how such protocol statecharts can be
used for verification issues of FBAs.

The next section explains how the syntax of FBA-translations is mapped to state-
charts. With this a standard semantics of the UML is defined to FBA-translations.

4 Semantics of FBA-Translations

When thinking about the semantics of FBA-translations some major decisions have to
be made. One first decision was if FBA-translations should be mapped to the seman-
tics of operations. In former publications about FBAs we used the notion of FBA-
operations instead of FBA-translations. But because wait and delay statements have
the semantics of wait states of statecharts, we decided to map the FBA-language com-
pletely to statecharts instead of to operations.

Another decision was to use statecharts with or without orthogonal regions. Even
though it was promising to base the semantics on roomcharts [8] we decided to use
statecharts with orthogonal regions as defined in [9]. This is because even though
translations often are orthogonal in their nature, they must access the same set of inter-
face variables. If orthogonal translations are modeled as orthogonal regions of an
FBA-statechart, it is easy for them to access the interface variables of the FBA. An
example of an FBA-statechart is illustrated in Fig. 9.

trigger /
 translationBody

S0

example for translations
without waitFor and delay

re
gi

on
s

fo
r

ot
he

r
be

ha
vi

or

example for translations
with waitFor and delay

S0 t0

waitFor1waitFor2

delay1

t_err

S1

trig1/
 actions2

timeout/
 actions3

trig2/
 actions4

timeout/
 exceptionBody

trigger/
 actions1

Fig. 9. Example of an FBA-statechart, which could be generated out of FBA-translations.

There is one region for each orthogonal translation. Translations without wait and
delay statements can be modeled with only one state. The statements of translation-
Body are actions, which are attached to a transition triggered by trigger. Translations
having wait and delay statements are modeled with two states S0 and S1. S1 has a
subchart which is generated according to the translationBody. If a timeout is received
from an internal timer before a waitFor-state is left, the transition t_err fires and ex-
ceptionBody is executed. The FBA-statechart of this figure is not related to the exam-
ple in section 2.

For the generation of statechart-elements out of the description of FBA-
translations, we defined two steps. In the first step all necessary orthogonal regions of
an FBA-statechart are created. As a starting point each region must contain a state S0
like in the middle of Fig. 9 or two states S0 and S1 like in the right side of Fig. 9. In
the second step the behavior given in translationBody and exceptionBody must be
generated. Some rules for this generation are given in Table 3.

Table 3. Semantics of some elements of the FBA-language

Syntax Semantics

‘waitFor’
 ‘(’ FBA_event_expression ‘)’

waitFor

FBA_event_expression /

‘waitFor’
 ‘(’ FBA_event_expression
 ‘,’ FB_time_literal ‘)’

waitFor

FBA_event_expression /

entry / timer.InformIn(FB_time_literal);
exit / timer.Cancel();

Syntax Semantics

‘delay’ ‘(’ FB_time_literal ‘)’ delay

timeout

entry / timer.InformIn(FB_time_literal);

assignments, send-statements,
operation calls of data classes

combination of
«ReadAttributeAction»
«WriteAttributeValueAction»
«SendSignalAction»

Assignments, send statements, and operation calls of data classes are generated to
suitable actions of transitions. The placement of these statements within the sequence
of translationBody determines, to which transition they are attached. Each region with
wait states has its own timer, which is started when a wait state is entered. The timer
generates a timeout signal, which is used to leave a delay state or to execute the ex-
ceptionBody in the case of a waitFor state is not left in time. If a waitFor state is left
in time, the timer must be cancelled.

Our semantics definition for FBA-translations uses only a small subset of UML-
statecharts. For this subset it is easier to define a formal semantics, which could be
used for example for modelchecking [4]. With this we close our discussion of seman-
tics of FBA-translations in this paper. The next section discusses the relation between
FBAs, hybrid system modeling and other related work.

5 Comparison to Hybrid Systems and Related Work

As already mentioned FBAs are applied in systems, in which behavior driven by con-
tinuous time and behavior driven by events is mixed. Hybrid system modeling ap-
proaches face this problem by extending event driven modeling techniques like state-
charts with continuous modeling techniques like differential equations [13], [14]. The
result of this is a much more complex modeling language than pure statecharts or pure
differential equations. To be able to solve differential equations the semantics of state-
charts must be extended.

A modeling approach, which adds data flow equations to statecharts of UML, is
introduced in [15]. It also introduces data ports, which are similar to our FBPorts. The
data flow equations introduced in [15] (like data trigger connection) could also be
useful to translate FB-protocols into UML protocols. Like FBA-translations this data
flow equations can be mapped to the semantics of pure statecharts, since they do not
support differential equations.

To distinguish our approach from related work we can outline three major differ-
ences. The first one is that FBAs are no hybrid modeling approach. The behavior of
FBAs is completely event-driven. There are no equations, which must be evaluated
continuously. The second difference is that we do not aim at applying the UML to
model behavior driven by continuous time. There are well-established function block

oriented modeling languages like Matlab/Simulink, IEC 61131-3, which have proven
to be of great use in this domain. Because FBs that are based on mathematics like in
Matlab/Simulink are executable, a MDA-approach for system development is also
supported. The third difference is that with FBA-translations we completely substitute
statecharts. Instead of enriching statechart syntax, we decided to provide a less com-
plex syntax, which is easier to share between developers of different domains and
background. Our experience shows, that in the field of industrial automation and con-
trol a huge set of small languages of low complexity is used. These languages are very
specialized to devices (robots, vision systems, sensors, controllers) or domains
(chemical industry, automotive, telecommunication). Simpler, more dedicated lan-
guages usually lead to more concise, less error-prone code, which is an obvious ad-
vantage. The disadvantage is the need of integrating components written in different
languages. The UML with its language architecture is well-prepared to face the prob-
lem of integrating different domain-specific languages, as we have shown in this pa-
per.

6 Summary and Future Work

In this paper we introduce a profile called FunctionBlockAdapters. It defines the set of
stereotypes, constraints, and tagged values, that are needed to extend UML-tools to
support function block adapters. We mapped the semantics of FBA translations to the
semantics of statecharts, and defined an FBA-language as a subset of the statechart-
language.

The description of behavior of FBAs is carried out using an executable and verifi-
able language, independently of platform-specific issues. With this a MDA-approach
for system development is supported.

The advantage of using FBAs is that they build bridges between purely time driven
and purely event driven, port based software components. Each component may use
its own language most suitable for its particular application domain. Instead of ex-
tending UML-semantics we restricted it to a small subset within FBAs. This is the
proposed way of using stereotypes within the UML. The connection of function
blocks and UML classes is a frequent task, which makes it worth to be supported by a
specialized stereotype.

Currently, we are interested in the development of an implementation framework
for function block adapters. This framework contains

• an integration process,
• class and FB libraries,
• design patterns,
• an FBA-Language parser and compiler,
• a simulation environment for validation purposes, and
• a modelchecker for verification purposes.
Another advantage of our approach is simple application to existing UML-tools

and FB-environments. So far we have working prototypes integrating PLC-
environments and UML tools, as well as Matlab/Simulink and UML tools.

References

 1. International Electrotechnical Commission, IEC 61131 - Programmable Controllers
Part 1 – 5, 1992 Genf

 2. Simulink, Dynamic System Simulation for MATLAB, The Mathworks, Inc. 2000

 3. T. Heverhagen, R. Tracht, Integrating UML-RealTime and IEC 61131-3 with Function
Block Adapters, Proc. of ISORC 2001, p. 395-402, IEEE Computer Society 2001

 4. T. Heverhagen, Verification of Funktionsbausteinadapters through Modelchecking (in
German), Journal at-Automatisierungstechnik 4/2003, p. 153-163, Oldenbourg 2003

 5. T. Heverhagen, Integration of languages for programmable controllers into the Uni-
fied Modeling Language through Function Block Adapters (in German), PhD Thesis
University of Duisburg-Essen, 2003

 6. T. Heverhagen, R. Tracht, Implementing Function Block Adapters, OMER, GI-Edition
- Lecture Notes in Informatics (LNI), P-5, Andy Schürr (Hrsg.), Bonner Köllen Verlag
2001, p. 122-134

 7. T. Heverhagen, R. Tracht, Using Stereotypes of the UML in Mechatronic Systems,
Proc. of the 1. International Conference on Information Technology in Mechatronics,
ITM'01, October 1-3, 2001, Istanbul, UNESCO Chair on Mechatronics, Bogazici Uni-
versity, Istanbul, Turkey, p. 333-338

 8. B. Selic, G. Gullekson, P. T. Ward, Real-Time Object-Oriented Modeling, John Wiley
& Sons 1994

 9. B. Selic, J. Rumbaugh, Using UML for Complex Real-Time Systems, Rational Software
1999, www.rational.com/products/rosert/whitepapers.jsp

 10. OMG document ptc/2003-08-02, Unified Modeling Language: Superstructure,
OMG 2003, ftp://ftp.omg.org/pub/docs/ptc/03-08-02.pdf

 11. International Electrotechnical Commission, Technical Committee No. 65:
Industrial-Process Measurement and Control, Working Group 6: Function Blocks

 12. PLCopen Technical Committee 2 TF, Function Blocks for Motion Control,
http://www.plcopen.org/forms/motioncontrol.htm

 13. R. Grosu, Th. Stauner, Visual Description of Hybrid Systems, Workshop On Real Time
Programming (WRTP’98), Amsterdam 1998, Elsevier Science Ltd.

 14. A. Filippov, A. Borshchev, Daimler-Chrysler Modeling Contest: Car Seat Model
OMER, GI-Edition - Lecture Notes in Informatics (LNI), P-5, Andy Schürr (Hrsg.),
Bonner Köllen Verlag 2001, p. 46-50

 15. L. Bichler, A. Radermacher, A. Schürr, Combining Data Flow Equations with
UML/Realtime, Proc. of ISORC 2001, p. 403-410, IEEE Computer Society 2001

Appendix

For the sake of completeness we provide in this section an example for the use of
FB_ControlLoop which was introduced in Fig. 3. We assume that a client application
is interested in the value of the actual position of the axis. Furthermore it wants to
change the value of the input variable position (Fig. 3). The client application is called
Simu_Client. Its protocol is shown in Fig. 10.

Simu_Client S0

S1

GetData

ISimuClient

ISimuFB

NewPosition(float)
Get()

«interface»
ISimuFB

controlPort

Data(float)

«interface»
ISimuClient

NewPosition

NewPosition

Fig. 10. Simu_Client and its protocol.

Simu_Client sends a message Get each time, it is interested in the actual position.
Within Simu_Client this message could be generated with the use of a periodic timer.
It is expected that Get is answered with the message Data which contains the actual
position as a parameter. When Simu_Client sends the message NewPosition, the pa-
rameter of NewPosition must be assigned to the input of FB_ControlLoop.

The FBA Simu_FBA was developed to be able to connect Simu_Client with
FB_ControlLoop (Fig. 11 and Fig. 12).

controlPort

ISimuClient

ISimuStart

float float

Simu_FBA

aPos pos

«Translations»
GetDataTranslation
NewPosTranslation

Fig. 11. The FBA class Simu_FBA

Simu_FBA contains two translations (GetDataTranslation and NewPositionTrans-
lation). Both translations are straightforward and need no further explanation.

aPos pos

controlPort

b: Simu_FBA

FB_ControlLoop

position actualPosition

controlPort

a: Simu_FBA

c

Fig. 12. A possible structure diagram.

name = GetDataTranslation
trigger = dataPort.Get
signals = {s1: dataPort.Data}
isOrthogonal = true
translationBody = {
 s1 := pos;
 send(s1);
}

name = NewPositionTranslation
trigger = controlPort.NewPosition
signals = {s1: controlPort.NewPosition}
isOrthogonal = true
translationBody = {
 pos := s1;
}

